
 1

 
 
 
 

Controlled & Automatic Processing: 
Behavior, Theory and Biological Mechanisms 

Walter Schneider & Jason M. Chein 
To appear in Cognitive Science 2003 

Send Correspondence to Walter Schneider at wws@pitt.edu 
 

Abstract 
Introduction 
 Definition of Automatic & Controlled Processing 



 2

 Seven Empirical Phenomena of Automatic and Controlled Processing 
 Advantages of Two Different Processing Modes 
Modeling of Automatic and Controlled Processing 
 Data Matrix of Modules 
 Simulation of Automatic Processing 
 Control System 
  Operations of Controlled Processing 
  Controlled Process Monitoring of Inner Loop Messages 
 Simulation of the transition from Controlled to Automatic Processing 
 Account of Seven Phenomena of Dual Processing 
Functional Anatomy of Controlled & automatic processing 
Relationship to Biological and Computational Models 
Conclusion 
References 
Table 1: Summary of CAP2 Components and Features 
Figures  
 Figure 1. Visual Search Paradigm 
 Figure 2.  Microstructure of a CAP2 module 
 Figure 3.  Macro-Structure of CAP2 
 Figure 4.  Priority learning simulation 
 Figure 5.  FMRI image of Control System 
 Figure 6. Mapping of CAP2 Brain Structures 
 

Abstract 
This paper provides an overview of developments in a dual-processing theory of 

automatic and controlled processing that began with the empirical and theoretical work 
described by Schneider & Shiffrin (1977) and Shiffrin and Schneider (1977) over a 
quarter century ago.  A review of relevant empirical findings suggests that there is a set 
of core behavioral phenomena reflecting differences between controlled and automatic 
processing that must be addressed by a successful theory.  These phenomena relate to: 
consistency in training, serial versus parallel processing, level of effort, robustness to 
stressors, degree of control, effects on long term memory, and priority encoding. We 
detail a computational model of controlled processing, CAP2, that accounts for these 
phenomenon as emergent properties of an underlying hybrid computational architecture.  
The model employs a large network of distributed data modules that can categorize, 
buffer, associate, and prioritize information.  Each module is a connectionist network 
with input and output layers, and each module communicates with a central Control 
System by outputting priority and activity report signals, and by receiving control signals.  
The Control System is composed of five processors including a Sequential Net, an 
Attention Controller, an Activity Monitor, an Episodic Store, and  a Gating and Report 
Relay.  The transition from controlled to automatic processing occurs in this model as the 
data modules become capable of transmitting their output without mediation by the 
Control System.  We describe recent progress in mapping the components of this model 
onto specific neuroanatomical substrates, briefly discuss the potential for applying 
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functional neuroimaging techniques to test the model’s predictions, and its relation to 
other models. 
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  The view that human cognition may comprise two different types of processing, 
controlled and automatic, has been a theme in the psychology literature for over a century 
(e.g., James, 1890).  This notion of dual processing has been prominent in the work of 
Richard Shiffrin and his students for the past thirty years.  Shiffrin’s early work with 
Atkinson (1968) detailed the role of controlled processing in studies of short-term 
memory and verbal learning.  In the early 1970s, he and his students (Shiffrin & Gardner, 
1972; Shiffrin, McKay, & Shaffer, 1976) performed attention studies indicating that 
multiple channels could be processed in parallel, a result that ran counter to much of the 
attention research of the time.  Building on these earlier findings, Schneider and Shiffrin 
(1977) and Shiffrin and Schneider (1977) published a set of companion papers that set 
out the theoretical and empirical basis for much of the work on automaticity that has 
emerged in the ensuing decades (as illustrated by the over 4800 citations of this work).  
There has followed an extended effort to develop an empirical and theoretical 
understanding of automatic and controlled processing (Anderson, 1992; Logan, 1980; 
Pashler, Johnston, & Ruthruff, 2001; Stanovich, 1987).    

 The present paper provides a summary and perspective of this evolving work, and 
considers some of the biological mechanisms that may underlie dual processing.  While 
our early work dealt with issues of visual search and basic executive function, subsequent 
research has elaborated on the role of controlled processing by applying the basic 
framework to understanding novice rule-based processing, problem solving, fast learning, 
and consciousness.  These applications of the theory have been tested in simulations with 
a computational model (CAP2) designed to capture key aspects of the dual processing 
theory.  In other research, we have begun to explore the physiological mechanisms 
mediating these different forms of processing (Schneider, 1999).  

 The mapping between empirical findings, theory, and biological mechanisms is 
complex.  This complexity may be explained, in part, by recognizing that human 
performance often results from an interplay between automatic and controlled processing 
and these processes may involve different cortical mechanisms.  This interplay is 
mediated by systems that have evolved to satisfy the need for operation in a complex 
environment, wherein attention must be guided to selectively process critical stimuli.  
From an evolutionary perspective, gradual increases in the complexity of behaviors 
supported in the human repertoire may have seeded the development of a precursor 
executive control system that later evolved to support fast (e.g., single-trial) learning 
mechanisms, and the ability to override learned associations, that are characteristic of 
human cognitive performance.       

Definition of Automatic & Controlled Processing  
The basic nature of automatic and controlled processing was laid out in our earlier 

papers.  In Schneider & Shiffrin (1977), an automatic process was defined as the 
activation of a sequence of nodes that “nearly always becomes active in response to a 
particular input configuration,” and that “is activated automatically without the necessity 
for active control or attention by the subject” (p. 2).  This ability for a process to occur in 
the absence of control and attention by the subject is perhaps the most salient feature of 
an automatic process, and was the basis for referring to such processing as “automatic”.  
In general, automatic processes “operate through a relatively permanent set of associative 
connections … and require an appreciable amount of consistent training to develop fully” 
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(Schneider & Shiffrin, 1977, p. 2).   An automatic attention response is a special type of 
automatic process that directs attention automatically to a target stimulus (Schneider & 
Shiffrin, 1977).   

In contrast to automatic processes, Schneider and Shiffrin (1977, pp. 2-3) defined a 
controlled process as “a temporary sequence of nodes activated under control of, and 
through attention by, the subject.”  Furthermore, controlled processes are “tightly 
capacity limited, but the costs of this capacity limitation are balanced by the benefits 
deriving from the ease with which such processes may be set up, altered, and applied in 
novel situations for which automatic sequences have never been learned.” 

The contrast between automatic and controlled processing was initially studied using 
extended consistent mapping (CM) training.   A consistent mapping task is one in which 
the response to the stimulus is consistent across extended periods of time (e.g., in a search 
task, the set of target stimuli is constant throughout the experiment).  Under consistent 
mapping, automatic processes can develop slowly as repeated stimuli are attended to.  
Although there may be marked performance improvements even within the first few trials 
(Logan, 1992), full automaticity typically requires hundreds of trials to develop.  In 
varied mapping (VM) training, the relationship of the stimulus to response mapping 
varies from trial to trial (e.g., in a search task, a stimulus that is assigned a given response 
on one trial is assigned a different response on the next trial).  With varied mapping, the 
prior and current associations are incompatible, thereby precluding automaticity and the 
development of an automatic attention response.  

Seven Empirical Phenomena of Automatic and Controlled Processing 
There has been a long and rich empirical history in the development of dual 

processing theory, as detailed in a review by Shiffrin (1988).  Additional recent reviews 
include Näätänen (1992), Bargh (1992), and Schneider et al. (1994).  In this section we 
will explain the core phenomena of controlled and automatic processing for the purpose 
of later relating them to our theory and toward understanding the biology of the two 
processing modes.  There are seven behavioral phenomena that should be explained by a 
comprehensive theory of automatic and controlled processing.  

(Insert Figure 1 about here) 
The major empirical paradigm in which these phenomena are explored is the search 

paradigm.  Figure 1 illustrates the search paradigm and the consistency manipulation.   
The subject is given a memory set of typically one to five items that they must remember.  
Then the subject sees a set of sequentially (single-channel) or simultaneously (multiple-
channel) presented probe items that he or she must search through.  If any of the probe 
items matches any of the items in memory, a target is detected, and the subject makes a 
positive response.  When a probe item does not match any of the memory set items, it is 
referred to as a distractor, and the subject makes a negative response or no response at 
all.  For example, the subject may be given a memory set of the letters “KJTL” to 
remember, and then a probe (e.g., “L” or “P”).  The subject compares each memory set 
item to the probe item, looking for a match.  In VM, items can be a target on one trial, but 
then become a distractor on the next trial.  Therefore, if the task has a varied mapping, 
then a given stimulus may require varied responses from trial to trial.  In contrast, in CM, 
items that have been targets on one trial never become distractors in subsequent trials.  
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Therefore, if the task has a consistent mapping, then a given stimulus always requires the 
same response1. 

The first relevant phenomenon observed in this paradigm is that extended consistent 
training is required in order to develop automatic processing, while controlled 
processes can be established in a few trials and under varied mapping situations.  As 
mentioned above, automatic search training develops after extended consistent search.  
For automatic search in detection experiments, the rate and effectiveness of learning are a 
function of the degree of consistency (Fisk & Schneider, 1982).  Shiffrin & Schneider 
(1977, experiment 3) showed that it is specifically the consistent mapping, rather than 
learning to categorize items rapidly (category search), that is critical for automaticity.  
Subjects began the experiment under varied mapping conditions in which they learned 
that letters belonged to one of two categories (GMFP vs. CNHD), but the category being 
searched for was varied from trial to trial (e.g., on one trial they searched for the letters 
GMFP with distractors CNHD, and on the next trial they searched for the opposite set of 
CNHD with distractors GMFP).  The category training continued for 25 sessions until the 
memory set size effect for searching for 2 versus 4 members of the category was the 
same, and performance was at asymptote.  At this point, the search was made consistent, 
with one category being always the target.  There was a dramatic improvement in 
processing speed, and a reduction in effort at the point where consistent search was 
introduced.  This result supports the view that automaticity, and the automatic attention 
response, emerges only when the stimulus-response mappings remain consistent.    

It is important to further note that the consistency of training need not be at the 
exemplar level.  Fisk & Schneider (1983) showed that, in category search, repetition of 
distinct items belonging to a common category, and not just repetition of the specific 
exemplars, promotes search improvement.   They also demonstrated that CM learning of 
a category transfers its performance advantages, to a large extent, to other members of the 
category even on first presentation of the new members.   

The second relevant phenomenon is that automatic processing is fast and parallel, 
while controlled processing is slow and serial.  In visual search tasks, for example, 
when using a VM paradigm, search is slow and serial.  Under VM conditions, search time 
is typically 40-60 ms per letter when a set of letters are the targets (Johnsen & Briggs, 
1973; Schneider & Shiffrin, 1977) and 200 ms per category comparison when items must 
be detected as members of a semantic category (Fisk & Schneider, 1983).  The graph in 
Figure 1 illustrates the difference in response times between VM and CM search.  
Indicative of the serial nature of controlled processing is the finding that VM search times 
increase linearly with the number of comparisons that must be made, both in memory 
(memory set) and in the display (search set).  The persistence of serial processing in VM 
search is also suggested by examination of the variance associated with search reaction 
times.  Specifically, for both positive (when the target is found) and negative (when the 
target is not found) response trials, variance increases as the number of required 
comparisons is increased.  This pattern of mean and variance increases for positive and 
negative responses provides strong evidence for serial search (Schneider & Shiffrin 1977, 

                                                 
1   The search task can be made more challenging by presenting multiple probe stimuli 

simultaneously in the display (e.g., 2 to 4 letters).  Such multiple-channel probe displays can contain both 
targets and distractors.  Consequently, while the response to targets remains consistent, the response to 
distractors will vary depending on whether they co-occur with a target.   
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Appendix F; Townsend & Ashby, 1983).  These findings contrast with those from CM 
search tasks, which show non-linear parallel search patterns with fast slopes (e.g., a 
category search slope of 2 ms per category).   As an important aside, it should be noted 
that controlled processing search is typically serial across memory set items, across items 
in a multiple-channel display, and across stages (e.g., perception and motor response).  
However, controlled processing can be parallel across items in a multiple-channel display 
when there is a single distinguishing feature being searched for (e.g., Treisman & 
Souther, 1985) or when the memory set size is one item (Schneider & Shiffrin 1977, 
appendix J).      

A third important phenomenon is that automatic search requires little effort and 
can operate in high workload situations, whereas controlled processing requires 
substantial effort and interferes with other controlled processing tasks.  This 
difference is very salient in subjective reports, in which subjects typically indicate that 
CM search does not feel mentally taxing, while VM search requires continuous effort.  In 
dual task situations, it has been demonstrated that CM search can occur in parallel with 
other CM or VM search tasks, whereas VM search trades off with other VM search tasks 
(Schneider & Fisk, 1982).   

A fourth phenomenon is that automatic processing is rather robust to stressors.  
In studies of the effects of alcohol, fatigue, stress, and vigilance on performance (Fisk & 
Schneider 1981, 1982; Hancock, 1986; Heuer, Spijkers, Kiesswetter, & Schmidtke, 
1998), performance under automatic processing is far less sensitive to such stressors than 
is performance under controlled processing.   

A fifth phenomena (one that at the time we demonstrated it was so striking that it 
influenced the naming of “controlled” processing in our theory) is the difference in 
cognitive control that can be applied to automatic and controlled processes.  
Specifically, once a process becomes automatic, it becomes difficult to control. The 
prototypical example of this phenomenon is the difficulty of control exhibited in the 
Stroop (1935) task.  Likewise, Shiffrin and Schneider (1977, experiment 1) showed that 
subjects took three times longer to unlearn and relearn an automatic search set than it 
took to learn the search set originally.  CM foils, stimuli that had been previously trained 
as CM targets but were now meant to be ignored, demanded attention (i.e., produced the 
automatic attention response) even when they occurred in locations known to never 
contain a target (Shiffrin & Schneider 1977, experiment 4d).  These effects could 
continue for thousands of trials.  In contrast, controlled VM search could be altered in a 
single trial, allowing for variation in what was being searched for, what locations the 
items were in, and of the nature of the required response, without producing significant 
changes in performance level.   

A sixth phenomenon is that the degree of learning is dependent on the amount 
and type of controlled processing, while there is little learning in pure automatic 
processing.  Fisk & Schneider (1984) showed that in a VM search task, involving 
controlled processing, the ability to recall having seen a distractor was a function of the 
number of times a distractor was compared (and also of the type of task, word versus 
category search).  In contrast, in a CM search task, involving automatic processing, 
subjects can repeatedly categorize words into a semantic category with little, if any, 
memory modification (learning) resulting.  The strong link between learning and 
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controlled processing, and the lack of such a link in automatic processing, is an important 
qualitative separation of these processing modes.   

The seventh phenomenon is that the automatic attention response is dependent on 
the priority assigned to a stimulus itself, rather than on the context in which the 
stimulus occurs.   An automatic attention response could in principle be triggered by the 
simple presence of a stimulus, or by the presence of the stimulus only when it appears in 
a particular context (e.g., when it is deemed to be a target, when it is held in working 
memory).  Empirical results support the hypothesis that the automatic attention response 
results from a priority code based solely on the stimulus input.  That is, every stimulus 
has an intrinsic (and modifiable) probability of attracting attention.  If the probability is 
high, then the stimulus is likely to grab attention without requiring the intervention of a 
controlled process (i.e., is likely to evoke an automatic attention response).  When there 
are several stimuli with high priority codes, the one with the highest priority wins out.  
These principles account for the nature of skill transfer and for the specific effects of CM 
training.  For example, Shiffrin, Dumais, and Schneider (1981) examined training and 
transfer in visual search tasks.  In these experiments, subjects were trained to search for 
particular sets of letters while ignoring other sets of letters.  For example, subjects may 
have searched for a given set of target letters, set A, in a set of distractors, set B (we refer 
to this as A[B]).  Training with A[B] shows positive transfer to scenarios where subjects 
must search for previously trained targets in a new set of distractors (A[N], were N is a 
new set of letters) and where subjects must search for new targets in old distractors 
(N[B]).  Presumably, in each of these conditions, prior experience with searching for 
stimuli in set A leads to an increase in their attentional priority, which then transfers 
across contexts, while experience ignoring stimuli in set B leads to a decrease in their 
attentional priority to a level below that of novel stimuli, which also transfers across 
contexts.  Accordingly, negative transfer occurs when old targets are to be ignored 
(N[A]), old distractors are to be detected (B[N]), and when the targets and distractor sets 
are reversed (B[A]).  Interestingly, subjects succeed in developing automaticity when 
search sets have strict priority A[B] and B[C].  However, completing the “triangle” by 
adding search for C[A] violates strict priority and causes one of the search conditions to 
show VM search behavioral patterns.  We have also attempted a wide range of 
manipulations of internal state (e.g., memory) and external state (e.g., background of the 
display) and found that priority code changes are independent of context (e.g., searching 
for A[B] on a green background and B[A] on a red background does not allow for the 
development of automatic attention responses (Schneider, unpublished).  Interestingly, 
this type of priority learning shows location specificity, with a fall off in transfer to more 
distant spatial locations. 

Advantages of Two Different Processing Modes 
Dual processing mechanisms would likely not have evolved unless there were 

survival advantages to having both modes of processing.  We assume that automatic and 
controlled processing are two qualitatively different forms of processing that provide 
complementary benefits.  Our simulations suggest that a single process alone can not 
provide both the fast learning of controlled processing and the high speed parallel robust 
processing of automatic processing.  So, although it may be less parsimonious to assume 
two different modes of processing, we argue that there are sufficient survival advantages 
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to a two-process system over a unitary architecture to have allowed a dual-process system 
to evolve.  The survival advantages to having both controlled and automatic processing 
are analogous to the non-overlapping and overlapping benefits of having rod and cone 
vision.  With controlled processing: 1) the fundamentals of new skills can be acquired 
quickly (e.g., one trial learning to escape when a life threatening stimulus appears), 2) 
critical stimuli can be attended while ignoring normally relevant stimuli (attend to a child 
in a crosswalk while inhibiting the prepotent response to accelerate on a green light)  3) 
variable bindings that allow general operations to be applied to temporarily relevant 
stimuli can take place (e.g., after eating a novel food, search for it in the environment), 4) 
learning can be passed between individuals by instruction or observation (rather than 
shaping), and 5) goal directed behavior can be planned and executed.  However, due to 
the slow execution, high effort, and poor robustness of controlled processing, it can 
operate on only a small number of stimuli at any time, and any skill acquired during 
controlled performance may not be sufficiently robust to resist rapid decay or 
deterioration in the presence of stressors.  Further, if a task requires the coordination of 
many sensory/motor inputs, the slow, resource limited nature of controlled processing 
will be a serious limitation (e.g., imagine trying to ski down a difficult slope using verbal 
rules to plan and execute motor movements).  Despite taking a long time to acquire, 
automatic processing has the advantages of being robust under stress, leading to long-
term retention of associated skills, and allowing many processes to occur in parallel.   

Modeling of Automatic and Controlled Processing 
The modeling of automatic and controlled processing has been an active forum in 

cognitive science over the past twenty-five years.   The initial Schneider and Shiffrin 
(1977) models provided a quantitative account of the behavioral data of controlled 
processing search accuracy and reaction time effects.  Several other approaches to 
modeling controlled and automatic processing have since been demonstrated.  For 
example, production system based computer modeling approaches (ACT-R, CAPS, 
SOAR) have been applied to a wide range of cognitive tasks in which automaticity may 
develop (particularly in problem solving behavior; Anderson, 1992; Just, Carpenter, & 
Varma, 1999; Young & Lewis, 1999).  Connectionist and parallel distributed processing 
models (McClelland & Rumelhart, 1988) have also been applied to address the 
development of automatic processes.  Schneider & Detweiler (1987) described a 
connectionist control architecture (CAP2) to account for the role of controlled processes 
in working memory phenomena. 

In this section we provide a review and extension of the Controlled and Automatic 
Processing 2 (CAP2) architecture (see also Schneider, 1999) that we have used to explore 
dual processing theory.  The CAP2 model seeks to account for the phenomena of 
automatic processing, and to explain the role of controlled processing in a wide range of 
cognitive tasks. 

Conceptually, CAP2 is a hybrid cognitive architecture, incorporating both symbolic 
(e.g., ACT-R) and connectionist (e.g., PDP) elements.  In actuality, the CAP2 
architecture is implemented with entirely connectionist components, but has networks 
that operate as sequential control structures that can configure the network to behave as a 
production system (e.g., to implement condition-action rules with variable binding based 
operations). The hybrid architecture is intended to capitalize on the complementary 
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strengths exhibited by the two modeling approaches, as they relate to controlled and 
automatic processing.  Specifically, production system architectures account well for 
symbolic variable binding behaviors, in which an algorithm in memory takes on a 
specific, yet arbitrary, input as the value of one of its variables (e.g., in VM search, an 
incoming stimulus is mapped to a variable representing the trial input, and then the 
particular form of the stimulus is compared to internal representations of the target 
stimuli).  Symbolic architectures can easily perform such variable binding tasks for 
arbitrary symbols (e.g., determine whether the following sequence is a palindrome of 
letters, “tzppzt”), while it is very difficult to build connectionist architectures that 
perform such tasks without extended training of the stimuli (Touretzky, 2002). 

Symbolic processing has the disadvantage of producing representations that are often 
brittle and exhibit limited transfer.  Connectionist processes, in contrast, show good 
generalization and parallel processing, but often at the cost of very long learning times 
(tens of thousands of trials), and an inability to transfer to analogous tasks that do not 
include similar stimulus elements.   

These properties of symbolic and connectionist architectures can be mapped onto the 
relative advantages of controlled and automatic processing.  Recall that automatic 
processes operate through a relatively permanent set of associative connections and 
require an appreciable amount of consistent training to develop fully.  Automatic 
processes therefore behave much like most connectionist networks (after they have been 
trained).  In contrast, a controlled process “may be set up, altered, and applied in novel 
situations for which automatic sequences have never been learned” (Schneider & 
Shiffrin, 1977, pp. 2-3).  Accordingly, controlled processing proceeds similarly to 
processing in most production system architectures.    

Table 1 provides a summary description of the CAP2 model architecture.  This 
model enables predictions at the micro level (type of units), macro level (organizational 
structure of cortical connections), and process levels (nature of executive function).  
Providing a biologically feasible model for human cognition requires a detailing of a 
comprehensive architecture.  It is a challenge to relate the multiple modes of human 
cognition to the rich complexity of brain structure.  Most models based on neural 
principles seek to demonstrate the ability of parsimonious architectural elements to 
predict human behavioral performance (e.g., computation by populations of additive 
connectionist units, as in McClelland & Rummelhart, 1988).  In contrast, the modules in 
CAP2 attempt to capture the computational richness of the diverse neuronal assemblies 
that comprise cortical modular columns (hyper-columns), which are found to recur 
throughout the cortex with regionally specialized connection patterns (White, 1989; 
Martin, 1988; Felleman & Van Essen, 1991; Goodman et al., 2001). 

(Insert Table 1 about here) 
 One of our goals in developing the CAP2 model has been to implement symbolic 

and connectionist processing through the use of a modular connectionist architecture and 
to provide explicit quantitative representations of both the development of automaticity 
and the nature of controlled processing.   The model achieves this goal by employing a 
Control System that monitors and modulates activity in a large Data Matrix of 
connectionist modules.  The connectionist modules in CAP2 are intended to mimic the 
modular quality of cortical structure.   As prefaced above, the brain is composed of many 
modules, each containing a large number of cells (some 10,000 hyper-columns, each  
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containing roughly 40,000 cells in the human brain; see Martin, 1988).   Each of the 
modules in CAP2 can receive input vectors,  and can locally buffer, categorize, prioritize 
and associate (learn) an output vector that can be sent to other modules.    The Control 
System is implemented as a set of interlinked connectionist processors (with properties 
resembling a symbolic architecture) that monitor and set control signals sent to the 
network of connectionist modules.  These control signals alter functional connectivity 
within the architecture, thereby enabling a wide variety of cognitive operations. 

(Insert Figure 2 about here) 
Data Matrix of Modules.  The module microstructure (Figure 2) involves two 

layers of units.  An input vector of activity excites the input-layer of units, which have 
excitatory auto-associative connections (i.e., project back onto themselves), as well as 
connections to a set of output units.  The auto-associative connections clean up and 
categorize the incoming signal (see Anderson, J. A., 1983).  The output-layer of units 
send a vector of activation to other modules.  The module architecture can be related to 
the classic connectionist three layer structure (input layer, hidden layer, output layer) 
where the input layer maps to the CAP2 module input layer, the hidden layer maps to the 
CAP2 module output layer, and the output layer maps to the CAP2 input layer in the 
module in the next higher tier of the hierarchy.  The output layer is gain modulated such 
that output vectors are transmitted only when the output gain is high.   

There are three module input control signals and two module output report signals.  
Providing control signals to a module allows the symbolic operations of the Control 
System to influence their behavior.  The first input control signal is the regional feedback 
gain, which modulates the auto-associative feedback on units in the input layer.  This 
feedback influences the coarseness of categorization of the input (Anderson, J. A., 1983), 
and also affects whether an input vector will be buffered or permitted to decay (Shedden 
& Schneider, 1990).  Modulating the input feedback allows the network to dynamically 
alter the catogorization criterion (e.g., when an ambiguous input occurs, the input-
feedback can increase until there is a categorization to a previously learned state), and to 
alter the extent of exogenous versus endogenous activation of a module (i.e., the extent to 
which the module is receptive to an arriving input vector).  The second control signal is 
the output gain, which determines attentional selection.  The output gain of a module is a 
scalar multiplication of all the output units.  The output gain signal can increase or 
decrease a module’s output gain to influence the transmission of the module’s output 
vector.  This signal is the principle mechanism of attentional control (attending to a 
module is equivalent to temporarily increasing its output gain so that it can transmit).  
The third control signal is the global reinforcement signal.  This signal causes a change 
in the connection weights within and between modules, and is therefore the triggering 
event that causes learning.   

Learning within a module actually takes two forms; associative learning and priority 
learning.  That is, when the reinforcement signal is given, any module that recently 
received an input vector and transmitted an output vector will alter its connection 
strengths in two ways.  First, input-output associative learning changes connection 
weights between the input vector and the output vector  (through connectionist learning 
rules such as back-propogation learning, see McClelland & Rumelhart, 1988) so that the 
input vector will ultimately come to evoke the appropriate output vector without external 
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influences.  Second, priority learning changes the connection weights between the input 
vector and the priority report (see below) to code the importance of the message.   

There are two module scalar output report signals, the activity report and the 
priority report, that provide the Control System with information needed to guide 
module selection and to detect memory matches (i.e., recognition).  The report signals are 
critical for keeping the Control System from falling into the “homunculus trap” of being 
overwhelmed by overly complex input.  The modules do the work of processing a vector 
of input (e.g., activation of 10,000 units) and represent the data to the Control System 
with just two simple scalars representing activity and priority.  A basic task of the Control 
System is to simply attend to the most important message, based on the module priority 
and activity reports.  One can think of the module’s scalar coding as a representation of 
the deemed importance of the message for transmission (e.g., like a person raising their 
hand to a particular height as an indication of how important they think their contribution 
to a discussion might be).  The “executive” Control System can then be implemented as a 
simple winner take all network that identifies the “active” (above a threshold) module 
with the highest priority signal (as explained below).  With module reports, a simple 
executive can thus effectively manage communications in the network.   

The activity report, provides a metric of activity in the module (i.e., the sum of the 
activity across all the units active in the input layer of a module; see Shedden & 
Schneider, 1990).  This report provides a metric of the degree of match (correlation) 
between multiple simultaneous input vectors to the module (Schneider & Oliver, 1991).  
The controller can limit search to those channels that have high activity reports, and can 
skip blank channels (e.g., attend to the ear that is receiving a message and ignore the 
other ear), thereby accounting for the lack of load associated with having to monitor 
potential, but empty, channels (Shiffrin & Schneider, 1977, experiment 4a).  

The second module output report, the priority report, determines which modules 
have the most important message to transmit.  The priority report is the result of an 
association of the input vector to the priority output unit for that module.  Important 
stimuli (e.g., one’s name) develop a high priority and are likely to be attended to.  The 
priority report has a distant and a local effect.  The distant output goes to the Control 
System, indicating the importance of the message.  The local signal connects to the 
output gating units of the module, and enables a brief output of the vector for high 
priority signals (even without an output gain signal from the Control System).  This local 
connection is the basis for automatic output from the module.   

(Insert Figure 3 about here) 
The macro level structure of CAP2 involves a Data Matrix of the above modules 

and a separate Control System that modulates communications within the system.  
Figure 3 illustrates the model’s macrostructure with the Control System on the left, and 
the Data Matrix of modules on the right.  The structure of the Data Matrix of modules is 
illustrated on the right of Figure 3.  Each region (e.g., vision, audition, motor) is a 
hierarchy of tiers, with each tier composed of hundreds of modules.  There may be many 
tiers in a region, and the modules within a tier can connect to multiple modules above and 
below them.  Tiers of the model correspond with hierarchical processing levels in the 
brain.  In vision, for example, there are an estimated 32 specialized cortical processing 
areas (e.g., V1, V2, V3, V3A, V4, TEO, etc.; see Baizer, Desimone, & Ungerleider, 
1993; Felleman & Van Essen, 1991), and each area would be represented as a tier in the 
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model.2  Across the brain, there are a substantial number of such tiers (Worden & 
Schneider, 1995, estimate that there are 500-1000 cortical areas based on differentiation 
of primate cortex) with a modest number of tiers for a given function (e.g., object 
identification involves twenty tiers). 

The most peripheral tier of each region corresponds to primary cortical areas.  
Sensory peripheral tier modules receive input from the sensory receptor systems.  
Meanwhile, motor peripheral tier modules output to motor systems. 

The top tier of each region is interconnected with other top tier modules on a circuit 
referred to as the inner loop (Schneider & Detweiler, 1987; see right side of Figure 3).  
Given their hierarchical position, these inner loop modules are likely to be found in 
association cortices.  The modules on the inner loop have a special status in three 
respects.  First, the inner loop of modules allows cross-region transmissions  (e.g., vision 
to motor output).  One important function of the inner loop is therefore that it provides 
cross modality communication while still allowing parallel computation within regions to 
occur without interference.  For example, visual processing and motor processing can 
occur in parallel because they do not share connections (and hence potential for 
communication interference) except at the top tier.  Second, the inner loop modules 
communicate vector messages to the Control System.  Consequently, modules on the 
inner loop are special in that their output vectors are the only representations (non-scalar 
information) available for inspection by the Control System.   This pathway for 
communication allows the productions established by the Control System to incorportate 
vector information represented in the inner loop modules, but not in the lower tier 
modules (see p 8 below).  Third, the inner loop modules project to an episodic store 
repository that supports the storage and retrieval of information on the inner loop, thus 
enabling previous inner loop states to be “reloaded”.     

Simulation of automatic processing.  Automatic processing in a CAP2 simulation 
is a direct result of having a high priority report producing an automatic transmission of a 
module’s output vector in the absence of controlled processing input.  More specifically, 
automatic processing occurs when priority coding is sufficiently high that it can trigger 
transmission, without waiting for an output gain signal to be input from the Control 
System.  Gupta and Schneider (1991) examined CM and VM learning in a simulation of a 
search task.  In simulated CM trials, the priority report increased the differentiation 
between eight target and eight distractor stimuli over 400 trials.  The result was that the 
reaction time functions for two to four item searches became flat after 200 trials, 
consistent with prior behavioral data (Kristofferson, 1972; Schneider & Shiffrin, 1977, 
experiment 2).  In VM search, there was no target/distractor differentiation, and hence 
search remained serial throughout training (as in Kristofferson, 1972; Schneider & 
Shiffrin, 1977, Experiment 2).   

The CAP2 model provides a computational account of automatic and controlled 
processing that is consistent with the earlier Schneider & Shiffrin (1977) description.  
Recall that we defined an automatic process as a sequence of nodes that “(nearly) always 
becomes active in response to a particular input configuration … without the necessity of 
active control or attention by the subject” (Schneider & Shiffrin, 1977, p. 2).   In CAP2, 
after CM training, a stimulus that evokes a high priority response will output the vector to 
                                                 
2 While tiers are organized in the current model as a strict hierarchy, we recognize that some cortical 
processing streams have convergent and divergent pathways (e.g., V2 to both V4 and MT) 
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other modules without the need for controlled processing, thereby demonstrating 
automaticity.    

It should be noted that this does not imply that attention cannot influence 
processing.3 The Stroop (1935) task illustrates the interaction of automatic and controlled 
processing.  The transmitting process may be automatic in the sense that, for word 
reading, a short automatic transmission occurs to a word that is attended.  The word 
stimulus is then transmitted to higher states that would ultimately produce the wrong 
response in an incongruent Stroop trial (e.g., a trial in which the word “RED” is printed 
in green ink, and the subject is to respond by saying “green”).  During Stroop training, 
the automatic word transmission would occur for a short time (less than half a second), 
and would shut down.  Thereafter, vectors from modules attending to the ink color could 
be transmitted to the response system.  Early in each trial, the motor system must be 
inhibited (kept at high feedback and low gain to block motor transmission of the word), 
and then, after the automatic transmission of the word drops down, the motor output is 
allowed to respond with the transmission of the ink color.   
  Control System.  The Control System in CAP2 is designed to dynamically 
reconfigure the network to perform different tasks by monitoring the report signals 
(activity and priority), and then transmitting control signals (gain, feedback, and 
reinforcement) back to the Data Matrix of modules.  The left side of Figure 3 illustrates 
the internal structure of the Control System as implemented in CAP2. 

There are five processors in the CAP2 Control System architecture, each with an 
information-processing role and likely cortical substrate.  The Sequential Net (SN) 
performs sequential control operations altering information flow in the Data Matrix.  The 
SN is a connectionist implementation of a production system, and performs condition-
action rules based on the contents of the modules and the task vector.  In a visual search 
task, the SN sequentially activates the modules containing the memory set and the 
modules containing and encoding the probe letters, monitors the degree of activity/match 
of the inputs, and releases a response vector when there is a match (further detailing of 
the SN is provided below).   

The Attention Controller tracks the module priority signals from the Data Matrix 
and changes output gains based on both top-down commands from the SN and bottom-up 
activity reports (e.g., the SN requests a scan of the visual scene from left to right, the 
bottom-up reports identify three sets of modules of high priority, the Attention Controller 
sequentially sends a high output gain signal to each of the high priority modules).  The 
Attention Controller is more than a relay station since it performs actions such as 
correcting the addressing of modules with changes in head and eye position, tracking 
positions that have been visited to minimize reprocessing of recently visited locations, 
and determining the rate at which items are scanned.   

The Activity Monitor processes the activity reports arriving from the Data Matrix, 
sets match thresholds for these reports, and communicates information regarding supra-
threshold activity on the network to the SN.  Like the Attention Controller, the Activity 
Monitor can constrain its scope to modules specified by top-down commands from the 
SN (e.g., monitor activity at the visual shape level) and may be also be driven by bottom-

                                                 
3 If the controlled output and automatic output increase the output vector gain, controlled processing can 
influence automatic processing.  If controlled processing reduces the gain of a later stage or increases the 
feedback of a stage, the degree of activation of the later stage can be influenced.   
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up signaling based on the activity reports of the Data Matrix.  Such activity reports from 
the Data Matrix reflect the degree of match for comparisons made in a given module, and 
also signals the decay of traces in a module.  The Activity Monitor locally adjusts match 
thresholds to be used in a task, and buffers the magnitude of supre-threshold matches 
along with the address of the reporting module.  This buffering allows the SN to check 
the match outcomes intermittently.   

The Episodic Store records the contents of vectors in the inner loop Data Matrix 
modules (association cortex) and also of the SN output vector, thus allowing the Control 
System to “recall” states of the inner loop modules in order to initiate plans.   

The Gating & Report Relay is a central routing nucleus for report and gain control 
signals.  This processor performs two functions: 1) to relay output gain control signals, 
emitted from the Attention Controller, to their target modules, and 2) to communicate a 
set of high priority and activity reports to the Attention Controller and Activity Monitor, 
respectively. Thus, report signals from thousands of modules are compressed and 
prioritized into vector messages. 

The SN is a high level central executive system.  It is “executive” in that it works on 
preprocessed data from the Data Matrix.  In other words, the SN does not process 
information vectors occurring throughout the Data Matrix, but rather operates on 
preprocessed reports from the data modules (and on vector transmissions from the inner 
loop, as explained below).  Again, by having the controller operate on preprocessed 
signals, the notion of homunculus that must process all information in the system is 
avoided, but the executive consequently has no access to underlying codes (unless they 
get to the inner loop).   

Schneider and Oliver (1991) implemented SN controlled processing as a 
connectionist sequential recurrent network (adapted from Elman, 1990).  The controlled 
processing network differs from the modules of the Data Matrix both in its 
inputs/outputs, and in its function.  This SN has as input the report signals of the modules 
that have been preprocessed in the Activity Monitor.  It also has three additional sources 
of input (see Figure 3): message vector inputs from the inner loop of modules, a context 
vector that represents the current environment (Schneider & Detweiler, 1987), and a task 
vector that represents the task demands (Schneider & Oliver, 1991).  The SN can also 
output vectors to the inner loop, and thereby influence information available to the Data 
Matrix.  This control network can implement a wide range of functions by loading 
different task vector programs that alter the way in which information can flow in the 
Data Matrix. 

The base operations of controlled processing include: 1) altering the gain of 
specific modules (attention); 2) attending to high priority messages; 3) changing feedback 
(categorization, buffering, and clearing of a module message vector); 4) comparing 
vectors; 5) sending reinforcement signals; 6) sending an output vector to the inner loop; 
7) configuring the Data Matrix (setting up a dynamic set of transmitting modules); 8) 
binding new associations; 9) performing goal based executive operations; 10) using 
context memory to return to previous tasks; and 11) recalling information from 
declarative memory (see Schneider, 1999).   

Again, controlled processing can be implemented as a sequential recurrent network 
that performs serial operations of a task, such as those required when solving logic 
problems or performing visual search (before training).  Although controlled processing 
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is implemented using connectionist units, it performs operations like a production system 
(see also Lebiere & Anderson, 1993).  Since data modules can contain vectors 
representing a particular class (e.g., lexical items) and controlled processing can execute 
condition-action rules, production system operations can be implemented.  The 
“condition” part of the productions can reference information in the control processors 
and from vectors in the inner loop modules (i.e., in top-tier modules). 

In simulation studies, Schneider and Oliver (1991) demonstrated that the SN could 
learn and execute multi-step programs, and could implement simple finite state grammars 
(see also Elman, 1990; Cleeremans et. al, 1989).  In a simulation of controlled 
processing, the SN learned six concurrent sequential programs of up to 25 steps each to 
perform digital logic problem solving for six gate types (AND, OR, XOR, NAND, NOR, 
XNOR) in 120 total trials (humans required 216 trials to reach accurate performance). 
The control network “learned the programs” through direct training of the vectors. That 
is, the task vector was set, then for each step of the program the output/input states of the 
network were set and the SN learned the mapping between the task state, the sequential 
steps of the program, and the final state using back-propagation to change the connection 
weights.  The sequences did include conditional states (e.g., if the inputs were all ones, all 
zeros, or mixed) and each conditional task was rehearsed on separate trials depending on 
the random sequencing of the trial conditions.  This is very similar to what happened in 
human subjects, in that humans subjects were given explicit verbal instruction (e.g., 
attend to the inputs of the gate: if all ones then code as all ones, if all zeroes then code as 
all zero, otherwise code as mixed).  It took the simulation an average of 20 repetitions per 
task program to learn the mapping.  The rapid learning illustrates that using a SN that 
works with report and control signals to control a network of connectionist modules 
yields a connectionist executive system that can produce very fast learning of complex 
routines.   

To implement the typical search task in controlled processing requires: 1) loading a 
set of lexical modules with the memory set, 2) monitoring the set of active visual 
channels, 3) sequentially attending (by increasing output gains) to each active set of 
modules, 4) monitoring the activity report of a visual shape module to determine if it is 
above threshold (see discussion of vector comparison below), 5) increasing the gain of an 
output module that is above threshold to produce a positive response, or shifting attention 
to the next remaining active display module if the prior module was not above threshold, 
6) shifting attention to the next remaining memory module if the prior step did not 
produce an output, 7) making the negative response if no output has occurred, or sending 
a reinforcement signal if a positive response (output) occurred. 

In CAP2, the Control System can trigger a reinforcement signal.  This signal results 
in a change in those modules that recently transmitted, altering their associated priority 
code.  If a positive reinforcement signal occurs, the mapping of a message vector within a 
module increases connections to the priority units to increase the priority report (Gupta & 
Schneider, 1991).  If the module transmitted and there was no reinforcement signal, then 
priority would be reduced.  Reinforcement also changes the within-module connection 
matrix so that the input comes to evoke the output.   

An important aspect of the ability to associate vectors based on input-output 
relationships is that controlled processing can rapidly build arbitrary associations by 
loading vectors and altering the transmission.  For example, in search tasks, it is typically 
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arbitrary what specific response is assigned to targets and distractors (e.g., push the “Z” 
key for targets, and the “/” key for distractors).  When a target (e.g., “CAT”) is detected, 
controlled processing sets up vector transmission sequences (transmit “CAT” received, 
then release previously loaded output response “Z” key).  Learning causes a local 
association of the “CAT” input to “Z” output in the module that had an input from the 
match and released the response.  The Control System mediated association learning 
contrasts markedly with learning by “shaping,” which requires much more time to 
acquire the skill (e.g., a monkey often requires months of training for tasks that humans 
can acquire in minutes).     

This ability of the Control System to stimulate associations between arbitrary vectors 
enables learning from instruction or imitation (see Schneider & Oliver, 1991; Schneider 
Pimm-Smith 1997), greatly speeding learning.  In CAP2, instructing the Control System to 
execute a controlled processing program allows rapid learning of a new tasks and of 
“arbitrary” input-output patterns.  CAP2 implements typical Hebbian learning such that a 
vector-in followed by a vector-out will result in changes in the connection matrix so that 
the input vector can ultimately evoke the output vector.   

A very important role of controlled processing is to speed the development of 
automatic processing by task division, and by learning from instruction.  In a 
simulation study (Schneider and Oliver, 1991), we compared connectionist back- 
propagation learning to learning in a connectionist network under the direction of a 
control processor (that could specify the levels and intermediate states for the task).  For 
the six input logic gate task, back-propagation connectionist learning required 10,885 
trials to reach criterion accuracy and reaction time.  In contrast, the control processor 
assisted network required only 120 trials (91 times faster)4 to reach the same accuracy 
level.  Still, performance remained slow and serial since it was dependent on the SN 
sequential operations.  With continued training of the control processor assisted network, 
a shift to automatic processing (speeded reaction times and enabling independence from 
the Control System) was achieved after 948 trials (11 times faster than the back-
propagation network). This learning speed-up was achieved by having the control 
processor divide the logic gate task into three subtasks (1- categorize input as all ones, all 
zeros, or mixed; 2- code gates as either AND, OR, XOR; and 3- perform negation when 
needed). 

The ability to learn from observation or instruction through the transfer of human 
learning without laborious shaping represents a very important jump in cognitive 
function.   Biederman & Siffrar (1987) remarked on an intriguing contrast in humans 
wherein learning can occur either through simple repetitive reinforcement, or through 
direct instruction.  During the 1930s in the USA, the skill of identifying the sex of chicks 
by visual inspection was trained by having each student deduce the sex of the chick, and 
then having an instructor provide the correct answer.  This training, which resembles the 
exemplar training used in connectionist modeling, took two years to develop the skill of 
chicken sexing.  In contrast, with explicit instruction, Biederman and Shiffrar (1987) 
demonstrated that students could learn to do the task nearly as well in ten minutes.   

                                                 
4  There are many learning algorithms that can be applied that would produce differential learning rates.  
This particular example contrasting back propagation in a three layer network demonstrated a nearly two 
order of learning difference.  This illustrates the scale of benefits that may occur in connectionist learning 
with and without a Control System setting up the number of vectors and the intermediate states.   
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So, an important characteristic of human cognition is the efficiency of learning with 
instruction.  The ability to transfer controlled processing routines from one person to 
another is conceptualized in CAP2 by assuming that the architecture can instruct which 
stimuli to load into the modules, which produces dramatic improvements in learning rate.  
At present we model verbal instruction in only a very simple form.  We assume that the 
model acquires instructions the way a human would.  Through the use of language, one 
person can instruct another regarding the basic composition of a task, the spatial locations 
to be attended and monitored, the match contingencies, and the appropriate output 
responses.  For example, in a search task, the instruction “Remember the words animal 
and vehicle (load lexical buffers), look at two input words above and below fixation 
(identify where to attend), if the words semantically match (specify that activity reports in 
the semantic region should be monitored), then press the ‘1’ key, else press the ‘2’ key 
(specify conditional responses, and the response to buffer on a match/mismatch).  After a 
small number of rehearsals, the executive Sequential Net can similarly acquire and 
execute a controlled processing program reliably.   

Controlled Process Monitoring of Inner Loop Messages.  To execute specific 
goal activities the Control System needs some access to specific messages.    In our 
original search models, controlled processing monitored only activity and priority reports 
on the module level (e.g., Schneider & Shiffrin, 1977).  This limited the precision of 
control to the class of stimuli that a module coded.  For example, for a module coding 
hunger, controlled processing could change gains and search the input space until 
something activated a food module.  However, it could not find a specific exemplar (e.g., 
“food” could be coded at the module level, but not a specific exemplar like “chocolate 
covered almonds”)5.  To allow controlled processing to problem solve and obtain specific 
goals, Schneider & Pimm-Smith (1997) proposed that controlled processing could 
monitor messages on the inner loop.  This access to the inner loop provided an 
interpretation of the computational basis of “consciousness,” as serial messages monitored 
by controlled processing to achieve specific goals.   This is similar to a proposal by Crick 
and Koch (1998) that only the top tiers of the visual system are available to consciousness.               

Schneider and Pimm-Smith (1997) also proposed that verbal instruction or 
“observing behavior” could allow transfer of a controlled processing routine from one 
person/animal to another, greatly speeding the learning of new controlled processing 
procedures.  In a study of how the model accommodates working memory phenomena, 
Schneider & Detweiler (1987) proposed a means for chunking input and output 
transmissions, wherein there is a parallel transmission of one module to multiple modules, 
and then sequential output to successive states.  They also proposed the use of fast 
associative learning in modules on the inner loop to enable reloading of working 
memory (see McClelland, McNaughton, & O'Reilly, 1995 ).   

Controlled processing has four very important benefits: performance of simple 
symbolic type tasks is possible, accurate performance can be achieved quickly in the 
range typically seen in human experiments (e.g., 20 trials per gate type), automaticity can 
emerge in the time scale seen in human learning experiments (e.g., several hundred 

                                                 
5  Even with the potential of ten thousand modules for all cognition, there would be too few module types 
for fine goal seeking behavior.  A module could contain many vectors all mapping to a single scalar value 
of activity and priority.  To seek specific goals, the control system needs access to some of the vector 
messages.  In CAP2 we assume there is access to the messages on the inner loop.    
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trials), and learning is not limited by simple shaping and feedback, but can occur by 
instruction or observation. 

Simulation of the transition from controlled to automatic processing.  The 
transition from controlled to automatic processing is a result of both learning and subject 
strategy.  Initially the subject must learn, through verbal instruction, the sequential 
controlled process that configures the Data Matrix to perform the task.  Then the program 
is executed sequentially (as specified by the Control System’s Sequential Net).  During 
early practice, controlled processing generates novel combinations of module 
transmissions (e.g., after the visual input of  “CAT” is attended and matched to a 
semantic category “animal”, then press the “Z” key with the index finger).  This results in 
associative learning, “cat to index finger”.   Priority learning causes the visual module 
coding “cat” to evoke a high priority output, independent of controlled processing.  As 
automatic processing develops with consistent practice, the automatic process gradually 
wins out, though it remains in a horse race with controlled search.  This predicts the 
gradual flattening of search load curves with practice (Gupta & Schneider, 1991; 
Schneider, 1999).   

Figure 4 contrasts the slope of load curves under consistent (Figure 4B) and varied 
(Figure 4C) mapping conditions.  Initially, automatic processing is slow and detects the 
target only on a subset of trials, resulting in a reduced memory or display size slope.  
However, as automaticity becomes reliable, the slope is eliminated.  The automatic and 
controlled processes can operate in parallel, with the faster (automatic) process producing 
the response, and the subject using controlled processing as a check on the response (and 
perhaps to continue to strengthen the automatic processing).  After several hundred trials, 
the subject can then drop controlled processing and maintain accuracy.  Subjects can then 
allow automatic processing to perform the task, and can deploy controlled processing 
either to tune the automatic performance or to perform other tasks.  However, it should be 
noted that subjects sometimes persist in executing unnecessary controlled processes, 
needlessly consuming limited controlled processing resources.6 

CAP2 Account of Seven Phenomena of Dual Processing 
Recall that the first phenomenon of dual processing is the need for extended 

consistent training in order to develop automatic processing.  Only when there is a 
consistent mapping in which the target stimulus is attended to, and responded to, will the 
priority code increase.  Recall that this occurs in the model because, when there is a 
sufficiently high priority code for a given input, the module can output a vector in the 
absence of Control system mediation.  In a visual search task, after each target detection, 
the attended modules will have received an input, released their output vector under 
controlled processing, and received a global reinforcement signal.  That sequence of 
vector-in, vector-out and reinforcement will increase the activity of the priority unit 
within the module and trigger associative learning (connection weight change) of the 
input vector to a higher priority code.  For distractors, the sequence is vector-in, no 
vector-out, and reinforcement.  In this case, the reinforcement signal without a vector-out 
results in an association to a lower priority code (see Figure 4A).  In CM search, the 
target stimuli associate to ever higher priorities, and the distractors to lower priorities 

                                                 
6  In dual task training some subjects must be extensively trained to let go of controlled processing and to 
allocate limited this capacity controlled processing to other tasks (Schneider, & Fisk, 1982; Schumacher et 
al., 2001).   
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over repeated trials.  In VM search, the priority remains at an intermediate equilibrium 
throughout training.  

(Insert Figure 4 about here) 
In CAP2, the acquisition of automaticity is slow, and needs to be slow in order to 

keep catastrophic interference from disrupting previously learned associations 
(McCloskey & Cohen, 1989).  In contrast, controlled processing is set up in the SN by 
loading a different task vector. Since the task vector provides a differential context, 
catastrophic interference is prevented.    

The second phenomenon of dual processing is the fast parallel performance for 
automatic processing and the slow serial performance for controlled processing.  
Automatic processing can be parallel across channels and across task stages (e.g., visual 
encoding, comparison, and response generation) because there are many modules that can 
each execute an automatic transmission without controlled gating (provided that the 
priority code is sufficiently high).  This occurs in CM conditions (see above).  Automatic 
processing is also parallel in memory, in that the auto-associative categorization that 
occurs in a module can, in parallel, map one input vector to its output vector by one 
settling of the module, rather than through serial comparison.  In CM search, over 
practice, visual search comparison rates will speed up (see Figure 4B) due to automatic 
detections occurring before controlled process serial search identifies the target7.   

Controlled processing in a search task is expected to be serial across items in 
memory, across items in the display, and across task stages.  Figure 4C shows the 
simulated practice effects in VM search tasks.  Without priority code differentiation of 
targets and distractors, automatic detection cannot occur.  Search must stay in controlled 
mode even after thousands of trials of practice.   

CAP2 explains the surprising inability of humans to do simple VM comparisons in 
parallel.  With perhaps ten thousand modules comprised of tens of thousands of cells 
each, why should human cognition for tasks as simple as finding a letter in a visual 
search be so serial?  In CAP2, these comparisons are made when a module receives 
multiple input vectors simultaneously (e.g., a memory set item vector and a probe item 
vector).  Specifically, these input vectors are added together to obtain the values of 
elements in the module’s input layer.  The sum of these input layer elements provides a 
measure of the degree of correlation between the module’s multiple vector inputs (see 
Schneider & Detweiler, 1987, Shedden & Schneider, 1990).  Recall that this sum is the 
basis for the module’s activity report.  Consequently, the activity report serves as a metric 
of correlation or “match” between module inputs.  Simulation results (Shedden & 
Schneider, 1990) illustrated that the accuracy of identifying a match between any two 
input vectors is influenced by how many total vectors arrive to the module 
simultaneously.  The measured detection accuracy (d') was 3.6 (1% error) for serial 
comparisons of one visual input vector to one memory vector, and reduced to d' of 0.98 
(14% error) for comparisons of two visual input vectors to one memory vector.  Making a 
comparison of four visual inputs in parallel to one memory vector reduced d' to 0.57 
(29% error).  Therefore, for comparisons based on vector addition there is a need to make 
the comparisons serially even though the module vectors involve parallel activation of 
potentially thousands of units.  That is, although all simulated vector operations can be 
                                                 
7 In CAP2, the Attention Controller scans items in order of priority, and therefore, as the target gets a high 
priority it will be the fist scanned via controlled processing.   
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done in parallel, the criterion of having to maintain high accuracy (typically above 90% 
in reaction time tasks) necessitates that the network make serial comparisons.   

The third phenomenon is that automatic search requires little effort and can operate 
in high workload situations, whereas controlled processing requires effort.  In CAP2, 
there is only one SN, and it is capacity limited in that it must sequentially perform 
recurrent cycles.  In contrast, automatic processing can occur in the Data Matrix with 
little or no SN involvement.  We assume that human reporting of “effort” is based on the 
amount of controlled processing activity, and not the number of automatic operations 
(e.g., driving is reported as less effortful than VM letter search, yet driving requires far 
more perceptual and motor processing).   

The fourth phenomena, that automatic processing is far more robust than controlled 
processing, is a result of the differential nature of processing in the SN and the Data 
Matrix.  Again, the SN is a recurrent network.  As associations deteriorate (e.g., due to 
“neural noise” introduced by alcohol) the sequential programs become unstable (e.g., 
making wrong branches, skipping steps, loosing goals).  Errors resulting from skipping 
steps, not maintaining criterion, or mistiming the sequencing of output gains can 
ultimately cause a failure to accomplish goals.    In contrast, automatic processing uses 
feed-forward vector associations that, for well-learned patterns, are rather robust to 
connection loss or neural noise. In fact, one can have the situation that deactivating 
controlled processing (e.g., by drinking alcohol) can make the Data Matrix operate in a 
fully automatic mode, causing an improvement in some consistent tasks. 

 The fifth phenomenon, the difference in cognitive control for automatic and 
controlled processes, follows from the architectural structure of the model and the 
limitations of controlled processing.  Theoretically, the lack of control is a result of the 
limitation of local information for automatic processes.  In CAP2, the local 
connections determine the priority of the message to be sent.  Because the association 
matrix is local to each module, priority coding occurs independent of the activities of 
other modules (that are not inputting to the current module) and of the activities of the 
Control System (unless the Control System is inputting to this specific module, as in gain 
control).  The within-module connections that code priority can only change slowly with 
practice (see above), and hence it takes considerable time to unlearn an automatic 
process.   

Controlled processing can be rapidly altered in two ways.  First, a change in the task 
vector may alter the current SN production program (e.g., switch the task from  “rhyme” 
judgement to “synonym” judgement).  Second, control processing can maintain the 
contents of modules to influence later processing (e.g., maintain the lexical buffer 
containing the memory item such as “cat” or “cap”).  The combination of task and 
memory buffering alters the resulting behavior (e.g., respond yes to “hat” when doing the 
“rhyme” task while buffering the word “cat” or while doing the “synononyn” task and 
maintaing “cap”).   Since control over these changes can occur in a single trial, the 
system can potentially alter behaviors that developed over decades in a matter of seconds 
(e.g., get up and walk on the side of your foot).  The ability to control behavior by 
maintaining and referencing specific information provides the computational power of 
variable binding, as illustrated in symbolic processing systems (e.g., Newell, 1990). 

 The sixth phenomenon is that learning is dependent on the amount and type of 
controlled processing, while there is little learning in pure automatic processing.  
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Empirically, it was demonstrated that learning appears to be a direct function of the 
number of controlled processing executions, with little impact of automatic transmissions 
(Fisk & Schneider, 1984).  Fisk and Schneider (1984) demonstrated that subjects had 
high recognition for controlled processing distractors presented only once, but poor 
recognition of distractors presented twenty times during automatic processing.  In 
simulation studies of the development of automaticity, we examined a variety of learning 
rules (Gupta & Schneider, 1991).  Stable learning occurred whenever there was a vector 
input to a module followed by a controlled process transmission (i.e., a transmission 
triggered by the Control System).  We also tried simulations with alternative learning 
rules.  One method allowed associative learning to occur both after automatic 
transmissions and controlled transmissions (and hence would predict learning during pure 
automatic processing).  This produced a pathological state in which, as automaticity 
developed, many low quality inputs produced automatic outputs resulting in destructive 
retroactive interference that prevented the simulation from discriminating inputs it had 
previously classified correctly.  Thus, limiting learning to controlled processing 
transmissions provides better stability for learned associations.     

 Finally, the seventh phenomenon is that the automatic attention response is 
dependent on the intrinsic priority of a stimulus (regardless of whether it is a target or a 
distractor), and is independent of the context in which the stimulus appears.  This 
phenomenon was implemented through priority learning rules in CAP2.  Without 
decreasing the priority following unsuccessful transmissions, simulation models can not 
unlearn previous priority codes (Gupta & Schneider, 1991).  With both positive and 
negative priority learning, the simulation shows transfer for both targets and distractors 
(as empirically demonstrated in Shiffrin et al., 1981).  Figure 4A shows the simulation of 
priority learning across trials.  Note that a CM target has a higher priority than a VM 
target.  Note also that an unlearned target (trial 1 CM target) has a higher priority than a 
well learned CM distractor.  The difference in priority codes predicts the pattern of 
transfer as a function of previous training of targets and distractors.   

Functional anatomy of controlled & automatic processing  
In this section we provide a mapping between the architectural assumptions specified 

in CAP2 (and shown in Figures 2 and 3) to particular neural structures.  As we alluded to 
at the onset of this paper, such mappings are complex owing to the interactive and 
distributed nature of processing in the cortex.  Accordingly, our mapping of theory onto 
anatomy is necessarily speculative and preliminary, and we anticipate that future research 
will be informative in this effort.  CAP2 was designed to predict a wide range of 
behavioral phenomena using a hybrid connectionist architecture.  Here we examine if the 
qualitatively different patterns of connection and function seen in CAP2 are evident in 
cortical organization.  

We begin by considering three basic predictions derived from the model that can be 
tested through functional neuroimaging research.  Let us first consider predictions 
regarding the Control System.  Recall that the Control System plays a central role during 
early CM task learning, but a considerably reduced role late in CM learning.  
Accordingly, a first prediction is that the neural substrates of the Control System should 
be identifiable in a contrast of brain activity produced during performance of a consistent 
task early in practice to that produced later in practice.  More generally, areas 
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implementing Control System processes are expected to be active when tasks require 
effortful and intentional processing, and to decrease activity as automaticity develops.  A 
second prediction stems from the fact that the Control System provides executive 
resources for all tasks before they are automatized.  Consequently, our second prediction 
is that brain regions supporting controlled processing should be active in novice 
performance across a wide range of tasks and materials.  The third prediction we consider 
regards the modules in the Data Matrix.  One notable feature of the CAP2 model is that 
automatic processing is based on the operation of the same modules that were involved 
during earlier controlled processing of the same task.  Therefore, a third prediction is that 
brain regions that remain active following extensive consistent practice should also have 
been active during early practice on the task.  

(Insert Figure 5 about here) 
Figure 5 shows brain areas exhibiting patterns of activity consistent with the first two 

predictions, and therefore implicated in Control System activity.  Specifically, the regions 
shown exhibited substantial reductions in activation during the learning of consistently 
matched paired-associates, and further, showed these reductions when learning paired-
associates from distinct material sets.  Brain regions fitting this reduction profile include 
bilateral prefrontal, medial frontal (anterior cingulate), posterior parietal, occipital-
temporal, and cerebellar areas.  Importantly, a meta-analysis of the neuroimaging 
literature shows that across studies of practice-dependent change, this same network of 
regions is consistently reported to show reductions with practice (Chein & Schneider, in 
preparation). We treat these regions as candidate substrates of the Control System and 
consider, below, the specific control functions that each may support.  Figure 6 provides 
a schematic diagram of these regions. 

Meta-analysis also provides evidence supporting our third prediction.  Namely, 
across studies using a baseline control condition, areas reported as active following 
practice are also generally reported as active early in practice.  Moreover, these regions 
exhibiting activity both before and after practice tend to be domain specific, in that they 
are not generally overlapping across studies using different tasks and material.  We 
accordingly interpret these areas of domain specific activity as reflective of processing 
which takes place within data modules that are relevant to the particular task being 
investigated. 

(Insert Figure 6 about here) 
The Sequential Network of CAP2 performs sequential goal-directed control, and we 

suggest that it maps to the dorsolateral prefrontal cortex (DLPFC).  The DLPFC is 
frequently cited as the locus of executive processes (e.g., Roberts, Robbins, & 
Weiskrantz, 1998).  Furthermore, axons from many different cortical regions project 
ultimately to the PFC (via the intralaminar nuclei of the thalamus), particularly the 
dorsolateral portion, thereby providing the necessary pathway through which output 
signals transmitted from all over the brain can converge on this centralized processor 
(Schneider, 1999).  The DLPFC is also implicated in guiding the sequential execution of 
operations during controlled processing (as discussed in Schneider & Oliver, 1991), as 
would be expected of a region behaving as the sequential network.  The SN should be 
active when a novel task is encountered (because a novel task requires that a new 
sequencing procedure be developed), and for tasks that require variable binding (e.g., VM 
search).  Tasks that have a high workload or require the planning and ordering of many 
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sequential operations should also engage this brain region.  Broadly, the prefrontal cortex 
again fits this profile.  The prefrontal cortex has been shown to be active in a wide variety 
of cognitive tasks (Cabezza & Nyberg, 2000), and Shallice (1996) has argued that 
planning is one of the primary functions of this brain region.  Increases in activation with 
workload are also often reported in the prefrontal cortex (Cohen, Perlstein, Braver, 
Nystrom, & et al., 1997; D'Esposito, Detre, Alsop, & Shin, 1995), and complex cognitive 
tasks (e.g., Raven’s progressive matrices: Prabhakaran, Smith, Desmond, Glover, & 
Gabrieli, 1997; Tower of Hanoi: Fincham, 2002) often elicit extensive PFC activity.  

In CAP2 the Attentional Control processor provides the mechanism for selective 
attention.  We suggest that this function maps to the posterior parietal cortex (PPC).  We 
believe that a region mediating this process should be active when a task involves 
frequent attentional shifts, and should be positioned near the top of brain’s organizational 
hierarchy so that it can exert attentional gating in data modules located deeper within the 
hierarchy.  The parietal cortex shows activation and connection patterns consistent with 
such a role.  Specifically, neuroimaging studies have shown this region to be active in 
tasks that require frequent shifting of attention (Corbetta, Kincade, & Shulman, 2002; 
LaBar, Gitelman, Parrish, & Mesulam, 1999).  Additionally, projections from the parietal 
cortex to the pulvinar nucleus of the thalamus, and back to other regions of the cortex, 
maintain a point-to-point mapping that might allow this region to exert attentional 
influences on processing in specific cortical modules distributed across the brain (Baizer, 
Desimone, & Ungerleider, 1993).  The parietal cortex has also been shown to be essential 
for selective attention processing through neuropsychological research.  For example, 
patients with PPC damage exhibit a “neglect syndrome” in which salient stimuli fail to 
attract attention (Mesulam, 2000).   

The Activity Monitor watches activity from the Data Matrix and sets decision 
criterion, and is suggested to map to the anterior cingulate cortex (ACC).  This 
monitoring function should be pronounced in new tasks particularly when performance is 
error prone and when prepotent automatic responses must be overcome.  The Activity 
Monitor also has the responsibility of determining whether the control being exerted by 
the Sequential Network is sufficient to produce successful task performance (i.e., limiting 
errors, inhibiting inappropriate responses).  Tasks that require the subject to overcome 
prepotent responses, such as the Stroop Task (1935), may place particular emphasis on 
this function.  Overcoming an automatic response requires the monitoring of module 
comparisons and the blocking of automatic transmissions.   Carter and colleagues (Carter 
et al., 1998; MacDonald, Cohen, Stenger, & Carter, 2000; van Veen, Cohen, Botvinick, 
Stenger, & Carter, 2001) have shown that the anterior cingulate cortex contributes to this 
type of control monitoring.  Specifically, this region of cortex responds when errors are 
made, and when there is a high level of conflict between task demands and habitual 
responses.  Interconnectivity between the ACC and the PFC provide a pathway through 
which the ACC may influence sequential controlled processes (Cohen, Botvinick, & 
Carter, 2000).   The anterior cingulate is particularly active early in difficult tasks (Chein 
& Schneider, in preparation; Raichle et al., 1994).  This matches an interesting 
characteristic of CAP2 simulations.  During the first few trials of a block, the Activity 
Monitor must set a criterion for what activity level is classified as a match.  On misses, 
CAP2 reduces the criterion and on false alarms it increases the criterion.  If there are too 
many errors, the search rate is slowed to increase sensitivity.  Human performance 
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typically shows greater errors at the beginning of a block, suggesting that some type of 
calibration of the decision criterion is taking place.  This suggests significant interaction 
between the SN and Activity Monitor during early trials.   

The Episodic Store records and recalls associations between the vectors in the inner 
loop and is suggested to map to the medial temporal lobe (hippocampus and neighboring 
cortex). The Episodic Store, as implemented in CAP2, provides a mechanism that enables 
resumption of a task after interruption through recall/reloading of inner loop modules. 
This function is implemented as a buffer that records the contents of inner loop 
processing, and can later retrieve this information if necessary.  Such bufferring is likely 
to be mediated by the hippocampus and its adjacent neocortical areas (see discussion in 
Schneider & Detwieler, 1987).  The hippocampus resides at the top level of the brain’s 
organizational hierarchy, the inner loop.  It receives input from association cortices 
responsible for high-level processing across many different domains (e.g., audition, 
vision, semantics, etc.).  Additionally, it has been argued that the hippocampus’s capacity 
for rapid binding of information enables this region to encode episodic memories that 
may then be retrieved via connections to the parahippocampal gyrus (McClelland et al., 
1995).     

In CAP2, the routing of report and gain control signals occurs through the Gating & 
Report Relay, which is suggested to map to the thalamus.  The thalamus has a very 
extensive connection pattern to all of the other regions implicated in the Control System, 
as well as to other cortical areas presumed to implement the modules of the Data Matrix.  
The thalamus is composed of principle sensory nuclei (e.g., the pulvinar nucleus, which 
connects to visual sensory areas) that have point-to-point connection patterns wherein 
neurons from a cortical hypercolumn project down to a very tight population of neurons 
in the thalamus and then back-project to the hypercolumn.  This projection pattern is 
expected of the neurons carrying priority and activity reports, as well as the output gain 
control scalars, in CAP2.  In addition, the thalamus has specialized nuclei that connect to 
other cortical structures to which we have attributed Control System functions.  For 
example, the dorsal medial thalamus projects to prefrontal cortex (SN in CAP2).  
Similarly, the anterior thalamic nucleus projects to the anterior cingulate gyrus and 
hippocampus.  Moreover, reversible lesion studies of the thalamus show the importance 
of the thalamus as a report monitoring center that is not essential for the processing of 
automatic behaviors.  Specifically, deactivation of the pulvinar nucleus of the thalamus 
(Desimone, et al, 1990) produces an inability to identify stimuli when they are in a 
display with competing stimuli in the visual field, but does not interfere with processing 
of a single stimulus in situations not requiring selective attention.  This finding is 
consistent with removing the ability of the Control System to control the Data Matrix 
such that all messages must be transmitted via automatic processing (as would happen 
without the Gating & Report Relay).  With only one stimulus to process, behavior would 
appear normal, while with multiple stimuli to process, the absence of selective attention 
would result in either no transmissions (when there are no pre-learned priorities) or 
multiple interfering transmissions.   

In CAP2, the Control System also transmits a reinforcement signal that triggers 
learning in the Data Matrix.  The global distribution of this reinforcement signal is 
suggested to map to the actions of the locus ceruleus and the ventral tegmentum.  These 
signals differ from the previously discussed module-to-module message projections and 
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report signal projections that have specific targets.  The diffuse projection components 
differ in anatomy and dynamics of operation.  In CAP2, the reinforcement signal is a 
general broadcast signal to the Data Matrix, directing all modules that recently had a 
controlled process output to change their associations so that, on future trials, the input 
that preceded the output is more likely to evoke the output vector in a single association.  
The reinforcement signal would be expected to occur after attended operations that leave 
memory traces.  Since the signal need not address individual modules (the local module 
activity indicates if it recently transmitted), a single neuron could effectively 
communicate this signal to a broad region of cortex.  Again, this pattern of connectivity 
and dynamics is consonant with properties of the locus ceruleus (LC) and the ventral 
tegmentum.  Projections from the locus ceruleus and the ventral tegmental area cover 
large regions of cortex including multiple lobes.  Furthermore, neurons in this circuit 
predict the likelihood of reward (e.g., when a stimulus predicts the presence of a reward, 
the LC activity shifts from the time of the reward stimulus to the time of the predictor 
stimulus; Schultz, Apicella, & Ljungberg, 1993). 

The locus of automatic processing in CAP2 is in the modules of the Data Matrix 
themselves.  There are thousands of modules that process specific classes of information.  
Note that controlled processing activates these areas as well.  The specific 
neuroanatomical location of these modules depends on the nature of the information 
being processed (e.g., specific to the sensory or motor channel conveying the 
information).   We would expect that most areas of cortex not subserving the control 
network are involved in stimulus coding, and would therefore be part of the Data Matrix 
where automatic processing takes place.  The areas we implicate in controlled processing 
represent a small proportion (less than 10%) of all cortex.  Anatomically, we would 
expect the cortex structure of the modules in the Data Matrix to be similar across many 
regions.  The proposal of a “cortical microcircuit” (Martin, 1988; Jones, 2000) is based 
on a repeating pattern of layering and input-output connectivity that is very similar across 
cortical regions, and even similar across species (from tree shrew to human).  The types 
of cells, layering, and modular connectivity are easily likened to a large Data Matrix of 
modules.  

To reiterate our earlier prediction from CAP2, those areas active in the final 
automatic task should have been active early in task acquisition as well.  Controlled 
processing modulates the behavior of modules in the Data Matrix, thus promoting 
automatic component processes in those modules.  Controlled processing does not 
develop the skill in one part of the brain and copy it to another part for automatic 
execution.  In our neuroimaging studies of learning, we find that the areas responsible for 
sensory and response components in the final task were also active early in the task, and 
that new areas do not generally emerge (e.g., Chein & Schneider, in preparation).     

There will undoubtedly be many follow-up studies relating dual processing theory to 
biology.  The core prediction is that these studies should reveal a Control System that 
modulates the behavior of a Data Matrix, resulting in the development of automatic 
component processes.  Our initial work supports this prediction.   

Relationship to Biological and Computational Models 
As a hybrid of symbolic, connectionist and biological models, CAP2 relates to other 

models in each of these classes.  Here we provide a selective review of some models, and 
some of their points of contact with CAP2.   CAP2 is fairly unique in that it places 
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critical emphasis on the flow of scalar report and gain control signals allowing a limited 
sequential controller to control a large parallel network. Norman (1969) proposed the 
nodes have a pertinence which is analogous to the priority report in CAP2.   

 Multiple investigators have suggested that attentional processing is the result of 
activity in a distributed network of brain regions.  For example, Mesulum (1990) 
emphasizes that attention emerges from the interactions between the DLFPC, anterior 
cingulate, and posterior parietal cotex.  Recall that these three structures map to the SN, 
Activity Monitor, and Attention Controller, respectively, in CAP2. Posner and Petersen 
(1990) further dissociate the component processes of attention into an anterior attention 
system (AAS) and a posterior attentional system (PAS).  The AAS is thought to be 
involved in executive control, detecting targets, and task switching operations, and to 
include the lateral prefrontal cortex, the anterior cingulate, the amygdala and premotor 
areas.  These functions and structures map readily to the Sequential Network and Activity 
Monitor in CAP2.  While we have not discussed the role of the amygdala, its connection 
and activation patterns are consistent with it being an additional processor on the inner 
loop that specializes in the coding of emotional contents in memory. The PAS is assumed 
to play a role in attentional selection by performing the operations of disengaging, 
moving, and engaging attention.  This posterior system is comprised of the posterior 
parietal cortex, the thalamus, the superior colliculus, and some cerebellar nuclei.    

Laberge (1997) has also proposed a neuroanatomical framework for attention and 
awareness in which attention is assumed to be mediated by a trianglular circuit including 
prefrontal areas, the thalamus, and specific posterior cortical modules that are 
conceptually similar to those employed in CAP2.  However, in contrast to CAP2, 
Laberge does not make a distinction between control/report signals and representation 
information.  For example, Laberge assumes that transmissions to the thalamus from 
cortical modules carry specific information regarding the actual stimuli/representations 
being processed (e.g., “G” is the current stimulus).  Recall that in CAP2, these 
transmissions do not contain such stimulus specific information, but are instead believed 
to represent scalar codes regarding the module’s activity and priority (e.g., the current 
stimulus is important).   We believe that evidence of preserved search task performance 
with single-channel, but not multi-channel, displays following deactivation of the 
thalamic pulvinar nucleus (Desimone et al., 1990) is more consistent with the CAP2 
interpretation.  That is, while Laberge’s model predicts a general degradation of 
performance with pulvinar deactivation, it does not predict the selective impairment of 
multi-channel (and not single-channel) tasks.      

While the Data Matrix in CAP2 was designed to mimic the modularity of the cortex, 
other biological models that more explicitly detail the nature of processing taking place in 
cortical hypercolumns have also been developed (e.g., Martin, 1988; Goodman et al., 
2001) . These models address much lower-level biological mechanisms than does CAP2 
(e.g., membrane channels), but share some of the same basic operating assumptions. 
Examples include the autoassociative properties of input units in a hypercolumn, and the 
ability of hypercolumn output units to be modulated by signals that scale their activity 
level (i.e. chandelier cells).  

CAP2 also resembles several symbolic processing models.  Examples of such 
models include SOAR (Newel, 1990), EPIC (Meyer & Kieras; 1997), ACT-R (Anderson 
& Lebiere; 1998), and 4CAPS (Just, Carpenter, & Varma, S. 1999).  These models 
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assume that the nature of human cognition can be largely characterized through 
condition-actions rules, or productions, of the form, “if some condition is met, then 
perform some action.” The relevant conditions can be very complex, and can take on 
variable bindings.  The SN in CAP2 is a simple production execution device 
implemented as a connectionist recurrent network.  As for the SN, symbolic processing 
models typically assume that the production system is a limited-capacity control resource 
(e.g., only a single production can be executed per cycle, regardless of the information it 
processes).  Further, like CAP2, most production system models assume that limited 
information is available to the production system.  Recall that in CAP2, the SN cannot 
operate on messages processed below the association tier of the Data Matrix.  This is 
similar in concept to the limited input working memory in EPIC and to buffers in ACT-R 
5.0 (Anderson et al., submitted).  Relatedly, the inner loop modules in CAP2 map fairly 
readily to the peripheral processors in EPIC (auditory, visual, ocular motor, visual motor, 
vocal motor, manual motor, tactile) and to buffers in ACT-R 5.0 (goal, visual, manual, 
imaginal, retrieval).  Likewise, the Episodic Store in CAP2 relates to the declarative 
procedure store in EPIC and the retrieval buffer in ACT-R.  Work on ACT-R 5.0 
(Anderson et al., submitted) also includes predictions regarding the neuroanatomical 
locations of production system components (e.g., goal buffer to DLPFC, retrieval buffer 
to VLPFC, productions to the basal ganglia) that resemble the mappings that we have 
proposed between CAP2 and the brain. 

Despite these similarities, there are important conceptual differences between 
production models and CAP2.  Production systems typically learn by building new 
productions, strengthening old ones, and converting productions from declarative form to 
procedural form.  In procedural form, productions are faster and can execute in parallel 
(e.g., Schumacher et al., 2001).  However, precisely when and how such learning can 
take place is typically not addressed.  In CAP2, instead of productions becoming 
compiled and still executed by the control system, modules in the data matrix become 
automatic and operate in the absence of control system input.  This allows parallel 
processing as long as the inputs are clear, responses are consistent, and the executive 
releases sequencing to the modules. 

The CAP2 architecture utilizes multiple connectionist concepts.  The basic 
multilayer processing typical of PDP models (McClelland & Rumelhart, 1988) is present 
in each module.  The fast learning of the Episodic Store uses techniques developed in 
models exploring episodic functions of the hippocampus (McClelland, McNaughton& 
O'Reilly 1995). The sequential recurrent nets developed by Elman (1990) were the basis 
for the SN in the Control System.  However, CAP differs in that it assumes part of the 
brain has evolved to control information flow in other parts of the brain.  CAP2 also 
assumes modules have a wider variation of unit types than is typical in connectionist 
layers (e.g., report cells, gain control units).   

In summary CAP2 was developed to predict the the dual process nature of human 
processing and skill acquisition utilizing biologically reasonable component 
architectures.  It provides a rich set of behavioral, computational, and biological 
predictions that can be related to other models and the developing physiological 
evidence.  As modeling becomes more constrained by the growing behavioral and 
imaging data, we see a convergence of operations and cortical structures across modeling 
methods.   
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Conclusion 
Dual processing theory has seen very productive development in the last twenty-five 

years.  It provides quantitative predictions of the dramatic changes in performance that 
emerge with task practice and a suitable interpretation of the cortical changes that 
coincide with learning.  It predicts that in consistent, but not varied, tasks, automatic 
component processes will develop.  A wide range of behavioral results are coherently 
interpreted within this framework.  Automaticity leads to fast, parallel, robust, low effort 
performance, but requires extended training, is difficult to control, and shows little 
memory modification.  In contrast, controlled processing is slow, serial, effortful, and 
brittle, but it allows rule-based processing to be rapidly acquired, can deal with variable 
bindings, can rapidly alter processing, can partially counter automatic processes, and 
speeds the development of automatic processing.  The benefits of dual processing were 
described initially by James in 1890 and detailed extensively by Schneider and Shiffrin in 
1977, almost a century later.  James (1890) remarked that, “the more of the details of our 
daily life we can hand over to the effortless custody of automatism, the more our higher 
powers of mind will be set free for their own proper work.”  In our work, we have not 
only shown how transitions between processing modes may occur, but have extended 
James’s view by recognizing that controlled and automatic processing are complementary 
modes of behavior supported by different processing architectures. 

There is a developing synergism between the behavioral, computational, and 
biological interpretations of dual processing theory.  We have described a computational 
model of human performance in the controlled and automatic process modes, which also 
explains the transitions between the modes.  The modeling work has lead to an 
understanding of the relevant processing tradeoffs, and to elaboration of the expected 
computational architecture.  A rapidly advancing brain imaging literature provides a 
forum for tests of this model, and offers initial support for key concepts in dual 
processing theory.  The physiology has also stimulated the implementation of new 
concepts in the model, such as the presence of inner-loop communications and 
declarative memory coding of inner loop information.  The early work on dual processing 
theory has evolved dramatically over the past twenty five years, and is expected to help 
provide interpretations for phenomena revealed in the developing biological and 
computational fields for many years to come.   
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Table 1 
Summary of CAP2 Components and Features 

 
• Data Matrix of Modules  

o Module Internal structure and operations 
� Two layer connectionist networks with autoassociative input layer and 

gain modulated output layer 
� Learning types: Input-Output Associative and Priority Coding  

o Module Inputs 
� Vector input from other modules/systems 
� Scalar control inputs: Output Gain, Feedback Gain and Reinforcement 

Signal 
o Module Outputs  
� Vector output to other modules/systems   
� Scalar outputs: Activity Report and Priority Report 

o Data Matrix Organization 
� Modules are organized into tiers, and tiers into regions 
� Output vector transmissions occur bi-directionally from tier to tier 
� Modules in the top level tiers of each region connect via an Inner Loop 

and send vector outputs to the Control System 
� Peripheral Tier modules receive vector inputs from sensory receptor 

systems or send vector outputs to motor systems 
• Control System 

o Comprised of five processors 
� Sequential Net performs sequential control programs 
� Attention Controller tracks module priority signals and changes output 

gains 
� Activity Monitor monitors module activity reports 
� Gating & Report Relay routes report and gain control signals 
� Episodic Store records associations between the vectors in the inner 

loop 
o Inputs to Control System  
� Module Priority and Activity Reports  
� Inner Loop module vector outputs 

o Outputs from Control System 
� Output Gain control to a small number of modules 
� Feedback Gain control to a particular region 
� Global Reinforcement Signal that triggers associative and priority 

learning 
� Vector messages to the Inner Loop 

• Processing modes 
o Automatic Process – when a module receives a message with a high priority 

code and transmits the associated output vector in the absence of a Control System 
input 
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o Controlled Process – when a module must wait for an output gain signal 
from the Control System in order to transmit its output vector 
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Figure 1. A visual search task. The memory sets for each trial are shown in shaded 
frames.  The subject memorizes the list.  Then, single probe letters are presented 
sequentially.  The subject presses the positive key if the probe matches any of the 

memory set letters.  If the probe does not match, the negative key is pressed.  In CM, a 
letter appearing in the memory set (a target) is never shown as a distractor on subsequent 
trials.  In VM, the same letter can be a target on one trial, and distractor on the next. The 
figure insert shows typical reaction time results (adapted from Briggs & Johnsen, 1973).   
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Figure 2.  (LEFT) Microstructure of a CAP2 module.  A set of input vectors arrive to the 
module (bottom left). These vectors pass through a connection matrix that reflects prior 
learning, and evoke a new activation pattern in the module’s input layer.  The input layer 
then activates the output layer through a second connection matrix.  An auto-associative 
loop connects the input layer units back to other units of the input layer, which provides 
feedback gain modulated by the feedback gain unit (F).  The module output is controlled 
by an output gain unit (G), which modifies the ability to send a transmission to other 
modules.  There are two output report units, the Activity Report unit (A) and the Priority 
Report unit (P), that are communicated to the Control System.  The Priority Report also 
has a local impact on the output gain unit, which allows the module to transmit, even in 
the absence of a Control System input, when a high priority signal is present.  There is 
also a global reinforcement signal that is broadcast to all modules, which causes recently 
transmitting modules to change their connection weights. (RIGHT) The organization of 
modules in a single region.  These modules are layered into tiers, which represent the 
hierarchical arrangement of processing from the periphery (primary sensory tier) to the 
inner loop (association tier).  Each module projects to multiple modules in the next tier, 
and communicates its report and output gain signals via the Gating & Report Relay.   
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Figure 3.  Macro-Structure of the CAP2 model.  The Control System is shown on the left 
and the Data Matrix on the right. The Data Matrix is comprised of multiple modules, 
organized into tiers and regions, sending vector messages to the next level within their 
region, and scalar report signals to the Gating & Report Relay.  The Inner Loop includes 
the top tier modules of each region (association areas).  These connect to other 
association regions, to Episodic Store, and to the Sequential Net.  .  The Sequential Net 
(left) is a sequential recurrent network executing serial control programs.  The Sequential 
Net outputs commands to the Activity Monitor, Attention Controller, and Episodic Store 
processors. 
 
 



 39

-5
0
5

0 5 0 0 1 0 0 0
T ria ls

P
ri

o
ri

t

200

400

0 1 2 3 4 5 6
R

T

1
2

45
3

VM

200

400

0 1 2 3 4 5 6

R
T

1

2

3

4
5

CM

CM+

CM-
VM

A

CB

R
T

Pr
io

rit
y

-5
0
5

0 5 0 0 1 0 0 0
T ria ls

P
ri

o
ri

t

200

400

0 1 2 3 4 5 6
R

T

1
2

45
3

VM

200

400

0 1 2 3 4 5 6

R
T

1

2

3

4
5

CM

CM+

CM-
VM

A

CB

R
T

Pr
io

rit
y

 
Figure 4.  Priority learning simulation. (A) Priority level across repeated trials for CM 
target stimuli (CM+), CM distractor stimuli (CM-), and VM stimuli (targets and 
distractors).  The dashed line represents the automatic transmission threshold.  (B) 
Simulated CM search results for number of comparisons.  Each line represents the 
average performance of the model after each increment of 50 trials.  (C) Simulated VM 
search results. (Adapted from Gupta & Schnieder, 1991). 
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Figure 5.  FMRI image of brain regions exhibiting decreased activity with practice in a 
consistent visual paired-associate learning task.  The colored areas indicate significant 
areas where activation was decreased in practiced relative to the novel performance.   
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Figure 6. Mapping of CAP2 macro scale architecture to brain areas. The executive 
Sequential Net is assumed to be located in dorsolateral prefrontal cortex (DLPFC).  
The Attention Controller maps to posterior parietal cortex (PPC) and the Activity 
Monitor to anterior cingulate cortex (ACC).  The Episodic Store maps to the medial 
temporal lobe (MTL), including the structures of the hippocampal complex.  The 
Gating & Report Relay maps to the thalamus (THAL), with different thalamic nuclei 
connecting to alternative Control System processors, receiving report signals from the 
data matrix modules, and sending output gain signals to the modules.  The arrows 
between regions illustrate known anatomical pathways.  Shown on the right of the 
figure are sample modules in the visual region of the Data Matrix, with report and 
control signals form each tier connecting to the thalamus.      
 

 
 
  


